

Visual Computing Lab @ TRECVID 2020

Disaster Scene Description and Indexing (DSDI)

Emmanouil Christakis, Stefanos Demertzis, Konstantinos Stavridis, Athanasios Psaltis, **Anastasios (Tassos) Dimou**, Petros Daras

Visual Computing Lab - Information Technologies Institute

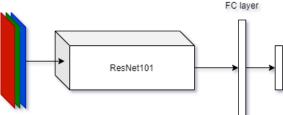
Preparing the Dataset

- → The given dataset contained images of very high resolution.
- → Downsized images to (224x224) due to computational constraints.
- → Assumed the feature was present if at least 1 worker annotated it
- → Create a frame export strategy (2 4 frames per given video clip)
 - ◆ 1 out of 3 frames if clip had less than 10 fps
 - ◆ 1 out of 100 frames if the clip had less than 20 fps
 - 1 out of 200 frames if the clip had more or equal to 20 fps

Preparing the Dataset: Object-based Annotations

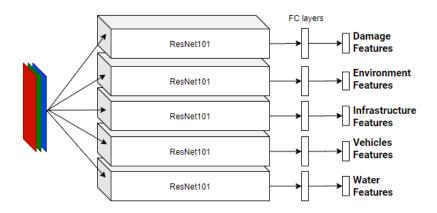
- → The dataset was annotated with 32 labels.
- → We argue that the localization of core image elements, would lead to improved performance in overall scene understanding.
- → Opted to train object detection networks.
- → Required annotation effort from our part with bounding boxes for a small portion of the dataset

Our Submissions


- → Five Independent ResNet101 Classifiers (L_VCL_1)
- → A multi task classifier (L_VCL_5)
- → Classifiers for concept / Object Detection for objects (O_VCL_3)
- → Classifiers over Faster R-CNN Features Map (O_VCL_6)
- → Classifiers over Faster R-CNN Features Map with attention (O_VCL_2)
- → Five Independent ResNet101 Classifiers with attention (O_VCL_4)

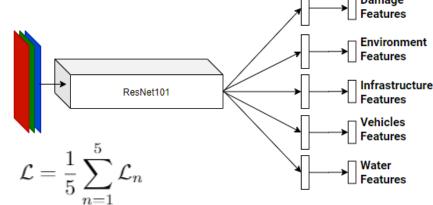
Five Independent ResNet101 Classifiers (L_VCL_1)

- → Five different Resnet101 classifiers, one for each category
- → The original dataset was split into 5 smaller parts, each one:
 - contained only images along with their annotations for one of the
 5 categories
 - used to train a different classifier



Five Independent ResNet101 Classifiers (L_VCL_1)

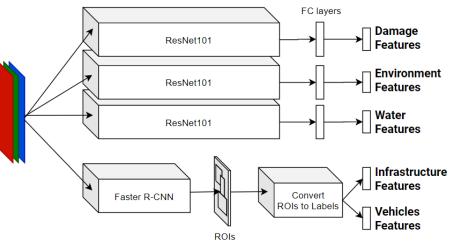
- → The classifiers were fine-tuned on the 5 smaller datasets
- → We regard this approach as our baseline with which to compare the other submissions



FC layers

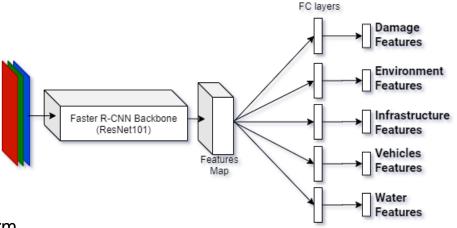
A multi task classifier (L_VCL_5)

- → Common ResNet101 backbone
- → 5 separate classifier heads on top
- → Calculate the loss for each task
- → Aggregate Losses on a global loss
- → Perform back propagation once


The average precision drops substantially using this approach.

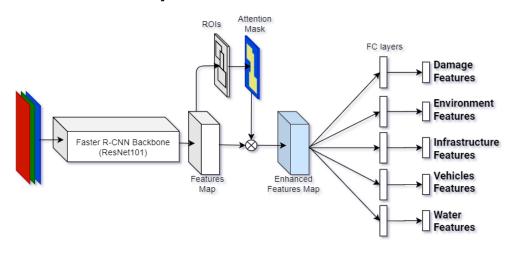
Classifiers for concept / Object Detection for objects (0_vcl_3)

- → Utilize the formed object localization annotations
- → Faster R-CNN object detector, using the object-specific annotations
- → Convert the output of Faster R-CNN to predict only the presence or absence of a feature
- → For the features in the three concept categories we use the classifiers implemented in L_VCL_1.



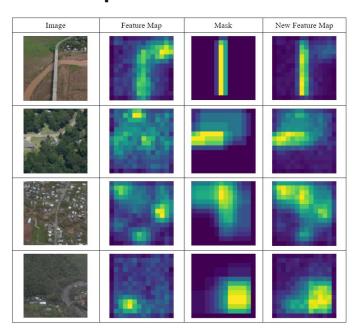
Classifiers over Faster R-CNN Features Map (O_VCL_6)

- → Common ResNet101 backbone
- → 5 separate classifier heads on top
- → Using the Resnet101 backbone from trained Faster R-CNN from O_VCL_3
- → 5 dataloaders to iterate over datasets separately
- → Calculate the loss for each task / Perform back propagation 5 Times



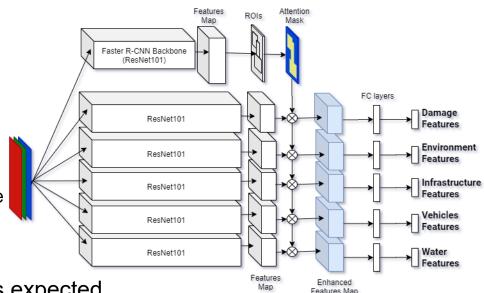
Classifiers over Faster R-CNN Features Map with attention (O_VCL_2)

- Create attention masks from the detected bounding boxes
- → Apply these on masks on the base features map
- → 5 dataloaders to iterate over datasets separately
- → Calculate the loss for each task / Perform back propagation 5 Times
- → Backbone is kept frozen during the training



Classifiers over Faster R-CNN Features Map with attention (O_VCL_2)

- → Create attention masks from the detected bounding boxes
- → Apply these on masks on the base features map
- → 5 dataloaders to iterate over datasets separately
- → Calculate the loss for each task / Perform back propagation 5 Times
- → Backbone is kept frozen during the training



Five Independent ResNet101 Classifiers with attention (O_VCL_4)

- → 5 different classifiers, one for each category
- → Apply the normalized attention mask over base features of C3 layer of the ResNet101 backbone

This method did not perform as expected.

Results and analysis

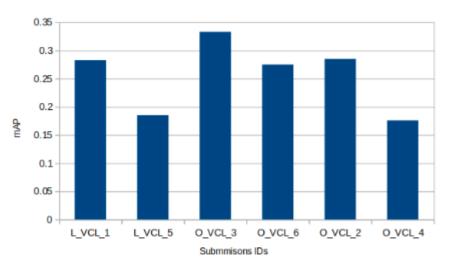


Figure 2. mAP achieved on the test videos by our submissions.

Results and analysis

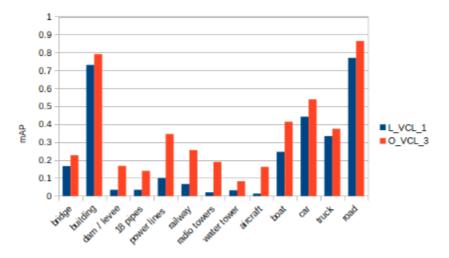


Figure 3. mAP comparison for submissions 1 and 3 for features in infrastructure and vehicle categories.

Results and analysis

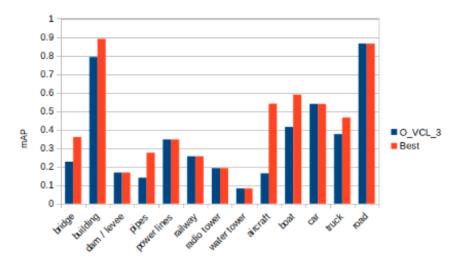


Figure 4. mAP of submission 3 vs best mAP for each feature in the infrastructure and vehicle categories.

Conclusion

- → Initially utilized ResNet101 classifiers
 - a) 5 different classifiers one for each feature category
 - ◆ b) one classifier with a common ResNet101 backbone and 5 classifiers heads on top
- → Afterwards, relied on Faster R-CNN object detection network for vehicle and infrastructure
 - ◆ combination of Faster R-CNN and 3 of the 5 classifiers for the other 3 categories from the initial approach performed the best
 - utilized the Faster R-CNN backbone as a feature extractor and 5 classifier heads on top
 - features extracted from the Faster R-CNN backbone were refined with masks formed by the Faster R-CNN detected bounding boxes,

Thank you

<u>www.faster-project.eu</u> https://www.youtube.com/channel/UCshNttcAHEzbEmJN0z0PKTA

dimou@iti.gr

